Detecting Hard-Coded Credentials in Software Repositories via LLMs

Labels Predicted by AI
Abstract

Software developers frequently hard-code credentials such as passwords, generic secrets, private keys, and generic tokens in software repositories, even though it is strictly advised against due to the severe threat to the security of the software. These credentials create attack surfaces exploitable by a potential adversary to conduct malicious exploits such as backdoor attacks. Recent detection efforts utilize embedding models to vectorize textual credentials before passing them to classifiers for predictions. However, these models struggle to discriminate between credentials with contextual and complex sequences resulting in high false positive predictions. Context-dependent Pre-trained Language Models (PLMs) or Large Language Models (LLMs) such as Generative Pre-trained Transformers (GPT) tackled this drawback by leveraging the transformer neural architecture capacity for self-attention to capture contextual dependencies between words in input sequences. As a result, GPT has achieved wide success in several natural language understanding endeavors. Hence, we assess LLMs to represent these observations and feed extracted embedding vectors to a deep learning classifier to detect hard-coded credentials. Our model outperforms the current state-of-the-art by 13 measure on the benchmark dataset. We have made all source code and data publicly available to facilitate the reproduction of all results presented in this paper.

Copied title and URL