BitHydra: Towards Bit-flip Inference Cost Attack against Large Language Models

Labels Predicted by AI
Abstract

Large language models (LLMs) have shown impressive capabilities across a wide range of applications, but their ever-increasing size and resource demands make them vulnerable to inference cost attacks, where attackers induce victim LLMs to generate the longest possible output content. In this paper, we revisit existing inference cost attacks and reveal that these methods can hardly produce large-scale malicious effects since they are self-targeting, where attackers are also the users and therefore have to execute attacks solely through the inputs, whose generated content will be charged by LLMs and can only directly influence themselves. Motivated by these findings, this paper introduces a new type of inference cost attacks (dubbed ’bit-flip inference cost attack’) that target the victim model itself rather than its inputs. Specifically, we design a simple yet effective method (dubbed ’BitHydra’) to effectively flip critical bits of model parameters. This process is guided by a loss function designed to suppress <EOS> token’s probability with an efficient critical bit search algorithm, thus explicitly defining the attack objective and enabling effective optimization. We evaluate our method on 11 LLMs ranging from 1.5B to 14B parameters under both int8 and float16 settings. Experimental results demonstrate that with just 4 search samples and as few as 3 bit flips, BitHydra can force 100 (e.g., 2048 tokens) on representative LLMs such as LLaMA3, highlighting its efficiency, scalability, and strong transferability across unseen inputs.

Copied title and URL