Labels Predicted by AI
ブロックチェーン統合 プライバシー保護メカニズム 機械学習手法
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Cross-institutional healthcare predictive modeling can accelerate research and facilitate quality improvement initiatives, and thus is important for national healthcare delivery priorities. For example, a model that predicts risk of re-admission for a particular set of patients will be more generalizable if developed with data from multiple institutions. While privacy-protecting methods to build predictive models exist, most are based on a centralized architecture, which presents security and robustness vulnerabilities such as single-point-of-failure (and single-point-of-breach) and accidental or malicious modification of records. In this article, we describe a new framework, ModelChain, to adapt Blockchain technology for privacy-preserving machine learning. Each participating site contributes to model parameter estimation without revealing any patient health information (i.e., only model data, no observation-level data, are exchanged across institutions). We integrate privacy-preserving online machine learning with a private Blockchain network, apply transaction metadata to disseminate partial models, and design a new proof-of-information algorithm to determine the order of the online learning process. We also discuss the benefits and potential issues of applying Blockchain technology to solve the privacy-preserving healthcare predictive modeling task and to increase interoperability between institutions, to support the Nationwide Interoperability Roadmap and national healthcare delivery priorities such as Patient-Centered Outcomes Research (PCOR).