Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
It is a challenging task to deploy lightweight security protocols in resource-constrained IoT applications. A hardware-oriented lightweight authentication protocol based on device signature generated during voltage over-scaling (VOS) was recently proposed to address this issue. VOS-based authentication employs the computation unit such as adders to generate the process variation dependent error which is combined with secret keys to create a two-factor authentication protocol. In this paper, machine learning (ML)-based modeling attacks to break such authentication is presented. We also propose a dynamic obfuscation mechanism based on keys (DOMK) for the VOS-based authentication to resist ML attacks. Experimental results show that ANN, RNN and CMA-ES can clone the challenge-response behavior of VOS-based authentication with up to 99.65 accuracy is less than 51.2 technique.