Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The recent popularity of machine learning calls for a deeper understanding of AI security. Amongst the numerous AI threats published so far, poisoning attacks currently attract considerable attention. In a poisoning attack the opponent partially tampers the dataset used for learning to mislead the classifier during the testing phase. This paper proposes a new protection strategy against poisoning attacks. The technique relies on a new primitive called keyed non-parametric hypothesis tests allowing to evaluate under adversarial conditions the training input’s conformance with a previously learned distribution 𝔇. To do so we use a secret key κ unknown to the opponent. Keyed non-parametric hypothesis tests differs from classical tests in that the secrecy of κ prevents the opponent from misleading the keyed test into concluding that a (significantly) tampered dataset belongs to 𝔇.