Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The Private Aggregation of Teacher Ensembles (PATE) is an important private machine learning framework. It combines multiple learning models used as teachers for a student model that learns to predict an output chosen by noisy voting among the teachers. The resulting model satisfies differential privacy and has been shown effective in learning high-quality private models in semisupervised settings or when one wishes to protect the data labels. This paper asks whether this privacy-preserving framework introduces or exacerbates bias and unfairness and shows that PATE can introduce accuracy disparity among individuals and groups of individuals. The paper analyzes which algorithmic and data properties are responsible for the disproportionate impacts, why these aspects are affecting different groups disproportionately, and proposes guidelines to mitigate these effects. The proposed approach is evaluated on several datasets and settings.