Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Recent works show that adversarial examples exist for random neural networks [Daniely and Schacham, 2020] and that these examples can be found using a single step of gradient ascent [Bubeck et al., 2021]. In this work, we extend this line of work to “lazy training” of neural networks – a dominant model in deep learning theory in which neural networks are provably efficiently learnable. We show that over-parametrized neural networks that are guaranteed to generalize well and enjoy strong computational guarantees remain vulnerable to attacks generated using a single step of gradient ascent.