Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The ongoing penetration of energy systems with information and communications technology (ICT) and the introduction of new markets increase the potential for malicious or profit-driven attacks that endanger system stability. To ensure security-of-supply, it is necessary to analyze such attacks and their underlying vulnerabilities, to develop countermeasures and improve system design. We propose ANALYSE, a machine-learning-based software suite to let learning agents autonomously find attacks in cyber-physical energy systems, consisting of the power system, ICT, and energy markets. ANALYSE is a modular, configurable, and self-documenting framework designed to find yet unknown attack types and to reproduce many known attack strategies in cyber-physical energy systems from the scientific literature.