Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Blockchain technology, a foundational distributed ledger system, enables secure and transparent multi-party transactions. Despite its advantages, blockchain networks are susceptible to anomalies and frauds, posing significant risks to their integrity and security. This paper offers a detailed examination of blockchain’s key definitions and properties, alongside a thorough analysis of the various anomalies and frauds that undermine these networks. It describes an array of detection and prevention strategies, encompassing statistical and machine learning methods, game-theoretic solutions, digital forensics, reputation-based systems, and comprehensive risk assessment techniques. Through case studies, we explore practical applications of anomaly and fraud detection in blockchain networks, extracting valuable insights and implications for both current practice and future research. Moreover, we spotlight emerging trends and challenges within the field, proposing directions for future investigation and technological development. Aimed at both practitioners and researchers, this paper seeks to provide a technical, in-depth overview of anomaly and fraud detection within blockchain networks, marking a significant step forward in the search for enhanced network security and reliability.