Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
With the exponential growth of data and its crucial impact on our lives and decision-making, the integrity of data has become a significant concern. Malicious data poisoning attacks, where false values are injected into the data, can disrupt machine learning processes and lead to severe consequences. To mitigate these attacks, distance-based defenses, such as trimming, have been proposed, but they can be easily evaded by white-box attackers. The evasiveness and effectiveness of poisoning attack strategies are two sides of the same coin, making game theory a promising approach. However, existing game-theoretical models often overlook the complexities of online data poisoning attacks, where strategies must adapt to the dynamic process of data collection. In this paper, we present an interactive game-theoretical model to defend online data manipulation attacks using the trimming strategy. Our model accommodates a complete strategy space, making it applicable to strong evasive and colluding adversaries. Leveraging the principle of least action and the Euler-Lagrange equation from theoretical physics, we derive an analytical model for the game-theoretic process. To demonstrate its practical usage, we present a case study in a privacy-preserving data collection system under local differential privacy where a non-deterministic utility function is adopted. Two strategies are devised from this analytical model, namely, Tit-for-tat and Elastic. We conduct extensive experiments on real-world datasets, which showcase the effectiveness and accuracy of these two strategies.