Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data. Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks, where adversaries poison the local training data of a subset of clients using a backdoor trigger, aiming to make the aggregated model produce malicious results when the same backdoor condition is met by an inference-time input. Existing backdoor attacks in FL suffer from common deficiencies: fixed trigger patterns and reliance on the assistance of model poisoning. State-of-the-art defenses based on analyzing clients’ model updates exhibit a good defense performance on these attacks because of the significant divergence between malicious and benign client model updates. To effectively conceal malicious model updates among benign ones, we propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger, making backdoor data have minimal effect on model updates. We provide theoretical justifications for DPOT’s attacking principle and display experimental results showing that DPOT, via only a data-poisoning attack, effectively undermines state-of-the-art defenses and outperforms existing backdoor attack techniques on various datasets.